Inferential Statistics

Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia.

Outlines

- Estimation
- Hypothesis Testing

- Statistics?
- Population vs sample?
- Inference?

- Statistics is a field of study dealing with (Daniel, 1995):
 - 1. Collection, organization, summarization and analysis of data.
 - 2. Making <u>inference/conclusion</u> about population data from sample data.

• Population *vs* sample

• Inference:

- Usually for <u>One Sample</u> → <u>One Population</u>
- Estimate *parameter* by

Mean SBP for Normal population

Interpretation: Based on a *sample* of 30 subjects, I am 95% sure that <u>mean SBP</u> of normal *population* is between 115mmHg to 125mmHg. The sample mean is 120mmHg.

Reporting: 120mmHg (95% CI: 115mmHg, 125mmHg)

Percentage of Obesity among University Students' population

Interpretation: Based on a *sample* of 100 subjects, I am 95% sure that **percentage of obesity** of university students' *population* is between 28% to 48%. The sample percentage is 38%.

Reporting: 38% (95% CI: 28%, 48%)

Dr. Wan Nor Arifin

GMT206 - Inferential Statistics

- Interval estimates values depend on *Confidence level* (90%, <u>95%</u>, 99%), *sample size* and *standard deviation* → Precision.
- Calculation*? Given in SPSS output. It is important to know the interpretation.

• Usually for <u>comparison of samples</u> \rightarrow <u>comparison</u> <u>of populations</u>.

Stated in form of Statistical Hypothesis → Can be tested with statistical test.

<u>Alternative Hypothesis</u>: Population A is different from Population B

<u>Null Hypothesis</u>: Population A is similar to Population B

- **P-value** Probability that the difference is merely by chance → Calculated from statistical test.
- Set acceptable level so called "chance" \rightarrow **Significance level**, α (<u>0.05</u>, 0.01, 0.001)

Alternative Hypothesis: P-value ≤ 0.05

<u>Null Hypothesis</u>: P-value > **0.05**

<u>Alternative Hypothesis</u>: Population A is different from Population B

Statistical Test

<u>Null Hypothesis</u>: Population A is similar to Population B <u>Alternative Hypothesis</u>: P-value ≤ 0.05

> <u>Null Hypothesis</u>: P-value > **0.05**

Comparing **Mean SBP** of **Medical Students' population** vs **Lecturers' population**

<u>Alternative Hypothesis</u>: Mean SBP of MS population is different from L population

Statistical Test

<u>Null Hypothesis</u>: No difference in Mean SBP between the populations <u>Alternative Hypothesis</u>: P-value \leq **0.05**

> <u>Null Hypothesis</u>: P-value > **0.05**

Independent t-test

Comparing **Obesity %** of **Medical Students' population** vs **Lecturers' population**

<u>Alternative Hypothesis</u>: Obesity % among MS population is different from L population

Statistical Test

Alternative Hypothesis: P-value \leq **0.05**

> <u>Null Hypothesis</u>: P-value > **0.05**

<u>Null Hypothesis</u>: No difference in Obesity % between the populations

Chi-squared test

Outcomes

- Understand basic concept of confidence interval.
- Able to interpret confidence interval.
- Understand basic concept of hypothesis testing.
- Able to interpret P-value.
- Understand concept of significance level.

Reference

Daniel, W. W. (1995). Biostatistics: A foundation for analysis in the health sciences (6th ed.). USA: John Wiley & Sons.

Interval estimates (mean):

Upper confidence limit = Point Estimate + Reliability Coefficient $\times \frac{SD}{\sqrt{n}}$

• Interval estimates (proportion):

p = proportion

Upper confidence limit = Point Estimate + Reliability Coefficient $\times \sqrt{\frac{p(1-p)}{n}}$

• Reliability Coefficient:

Confidence level	Reliability coefficient
90%	1.65
95%	1.96
99%	2.56